Arsenite oxidation and arsenate respiration by a new Thermus isolate.

نویسندگان

  • T M Gihring
  • J F Banfield
چکیده

A new microbial strain was isolated from an arsenic-rich terrestrial geothermal environment. The isolate, designated HR13, was identified as a Thermus species based on 16S rDNA phylogenetic relationships and close sequence similarity within the Thermus genus. Under aerobic conditions, Thermus HR13 was capable of rapidly oxidizing inorganic As(III) to As(V). As(III) was oxidized at a rate approximately 100-fold greater than abiotic rates. Metabolic energy was not gained from the oxidation reaction. In the absence of oxygen, Thermus HR13 grew by As(V) respiration coupled with lactate oxidation. The ability to oxidize and reduce arsenic has not been previously described within the Thermus genus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations.

Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed conserved total arsenic transport and rapid arsenite oxidation occurring within the drainage channel. This environment w...

متن کامل

11 Bacterial Respiration of Arsenate and Its Significance in the Environment

Although arsenic is a trace element in terms of its natural abundance, it nonetheless has a common presence within the earth's crust. Because it is classified as a group VB element in the periodic table, it shares many chemical and biochemical properties in common with its neighbors phosphorus and nitrogen. Indeed, in the case of this element's most oxidized (+5) oxidation state, arsenate [HAsO...

متن کامل

Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park.

An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H(2) as its sole energy source and had an optimum temperature of 55 to 60 ...

متن کامل

An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27

Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, en...

متن کامل

Arsenic Oxidation Using UV-Activated Persulfate in Aqueous Solutions: Optimization Using Response Surface Methodology Based on Box-Bencken Design

Introduction: The use of arsenic contaminated water can cause a variety of adverse health effects in humans. Therefore, it is essential to seek out a method to remove arsenic more efficiently. This study examined the amount of arsenic oxidation by response surface methodology (RSM) based on Box-Bencken design. Materials and Methods: In this study, oxidizing arsenite to arsenate was performed b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology letters

دوره 204 2  شماره 

صفحات  -

تاریخ انتشار 2001